WILBERT

Wildauer Bücher+E-Medien Recherche-Tool

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    MDPI Publishing
    In: Entropy
    Publication Date: 2015-04-14
    Description: In order to describe the phenomenon of intermittency in wall turbulence and, more particularly, the behaviour of moments  and and intermittency exponents ζP with the order p and distance to the wall, we developed a new geometrical framework called “entropic-skins geometry” based on the notion of scale-entropy which is here applied to an experimental database of boundary layer flows. Each moment has its own spatial multi-scale support Ωp (“skin”). The model assumes the existence of a hierarchy of multi-scale sets Ωp ranged from the “bulk” to the “crest”. The crest noted characterizes the geometrical support where the most intermittent (the highest) fluctuations in energy dissipation occur; the bulk is the geometrical support for the whole range of fluctuations. The model assumes then the existence of a dynamical flux through the hierarchy of skins. The specific case where skins display a fractal structure is investigated. Bulk fractal dimension  and crest dimension  are linked by a scale-entropy flux defining a reversibility efficiency  (d is the embedding dimension). The model, initially developed for homogeneous and isotropic turbulent flows, is applied here to wall bounded turbulence where intermittency exponents are measured by extended self-similarity. We obtained for intermittency exponents the analytical expression with γ ≈ 0.36 in agreement with experimental results.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...