WILBERT

Wildauer Bücher+E-Medien Recherche-Tool

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    European biophysics journal 27 (1998), S. 532-539 
    ISSN: 1432-1017
    Keywords: Key words Ameboid deformation ; Ameboid locomotion ; Computational model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract Traditional continuum models of ameboid deformation and locomotion are limited by the computational difficulties intrinsic in free boundary conditions. A new model using the immersed boundary method overcomes these difficulties by representing the cell as a force field immersed in fluid domain. The forces can be derived from a direct mechanical interpretation of such cell components as the cell membrane, the actin cortex, and the transmembrane adhesions between the cytoskeleton and the substratum. The numerical cytoskeleton, modeled as a dynamic network of immersed springs, is able to qualitatively model the passive mechanical behavior of a shear-thinning viscoelastic fluid (Bottino 1997). The same network is used to generate active protrusive and contractile forces. When coordinated with the attachment-detachment cycle of the cell's adhesions to the substratum, these forces produce directed locomotion of the model ameba. With this model it is possible to study the effects of altering the numerical parameters upon the motility of the model cell in a manner suggestive of genetic deletion experiments. In the context of this ameboid cell model and its numerical implementation, simulations involving multicellular interaction, detailed internal signaling, and complex substrate geometries are tractable.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of mathematical biology 57 (1995), S. 679-699 
    ISSN: 1522-9602
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Mathematics
    Notes: Abstract The fluid dynamics of sperm motility near both rigid and elastic walls is studied using the immersed boundary method. Simulations of both single and interacting organisms are presented. In particular, we find that nearby organisms originally undulating with a 90° phase shift may adjust their relative swimming velocities and phase-lock. Comparisons with previous analytical results are also discussed. The tendency of a near-wall to attract organisms is demonstrated.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Fluid Mechanics 38 (2006), S. 371-394 
    ISSN: 0066-4189
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Mammalian fertilization requires the coordinated activity of motile spermatozoa, muscular contractions of the uterus and oviduct, as well as ciliary beating. These elastic structures generate forces that drive fluid motion, but their configurations are, in turn, determined by the fluid dynamics. We review the basic fluid mechanical aspects of reproduction, including flagellar/ciliary beating and peristalsis. We report on recent biological studies that have shed light on the relative importance of the mechanical ingredients of reproduction. In particular, we examine sperm motility in the reproductive tract, ovum pickup and transport in the oviduct, as well as sperm-egg interactions. We review recent advances in understanding the internal mechanics of cilia and flagella, flagellar surface interaction, sperm motility in complex fluids, and the role of fluid dynamics in embryo transfer. We outline promising computational fluid dynamics frameworks that may be used to investigate these complex, fluid-structure interactions.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...