WILBERT

Wildauer Bücher+E-Medien Recherche-Tool

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Electronic Resource
    Electronic Resource
    Berkeley, Calif. : Berkeley Electronic Press (now: De Gruyter)
    ISSN: 1542-6580
    Source: Berkeley Electronic Press Academic Journals
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: Microstructured reactors with their benefits especially concerning enhanced mass and heat transfer represent a means for process intensification. A broadly used microstructured lab tool in the area of gas/liquid contacting is the Falling Film Microreactor (FFMR) developed by IMM in which liquid films of a few tens of micrometer thickness and interfacial areas of up to 20,000 m2/m3 combined with an effective heat exchange can be obtained. Now the concept of the Falling Film Microreactor has been developed further with regard to increasing throughput in order to reach pilot production level and as a basis for future production scale throughput. Therefore, two different prototypes with a tenfold larger structured surface area have been developed and realized. The feasibility of a corresponding increase of throughput has been demonstrated for the oxidation of an organic compound using oxygen which is closely linked to an industrial relevant reaction and additionally by the absorption of CO2 in an aqueous sodium hydroxide solution. Naturally, process optimisation itself also contributes to the efforts to increase throughput. Therefore, the oxidation reaction has been optimised in both varying process parameters (temperature, flow rates, pressure) and reactor parameters (microchannel width and depth) in the original, standard Falling Film Microreactor. Conducting experiments at 10 bar instead of ambient pressure and using a reaction plate with 1200 µm x 400 µm channels instead of 600 µm x 200 µm channels lead to an increase in conversion. These investigations also encourage exploring more challenging process conditions and thereby following the concept of "novel chemistry."
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...