WILBERT

Wildauer Bücher+E-Medien Recherche-Tool

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    facet.materialart.
    Unknown
    American Institute of Physics (AIP)
    Publication Date: 2016-05-14
    Description: Structural and optical properties of InGaAs quantum well fins (QWFs) selectively grown on Si using the aspect ratio trapping (ART) method in 200 nm deep SiO 2 trenches are studied. A new method combining cathodoluminescence, transmission electron microscopy, and precession electron diffraction techniques is developed to spatially correlate the presence of defects and/or strain with the light emission properties of a single InGaAs QWF. Luminescence losses and energy shifts observed at the nanoscale along InGaAs QWF are correlated with structural defects. We show that strain distortions measured around threading dislocations delimit both high and low luminescent areas. We also show that trapped dislocations on SiO 2 sidewalls can also result in additional distortions. Both behaviors affect optical properties of QWF at the nanoscale. Our study highlights the need to improve the ART growth method to allow integration of new efficient III-V optoelectronic components on Si.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...