Wildauer Bücher+E-Medien Recherche-Tool

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

  • Long-term potentiation  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Pflügers Archiv 427 (1994), S. 481-486 
    ISSN: 1432-2013
    Keywords: Zinc ; Long-term potentiation ; Excitatory amino acid receptors ; Hippocampus ; Intracellular recording ; Zinc chelator
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The phenomenon of long-term potentiation is frequently promulgated as an example of learning and memory mechanisms at the synaptic level in the mammalian central nervous system. In the CA3 region of the hippocampus there is an abundance of zinc, which is located in presynaptic mossy fibre nerve terminals. Stimulation of these fibres can cause the release of zinc, which interacts with excitatory amino acid receptors and may therefore modulate long-term potentiation. We now demonstrate in CA1 and CA3 neurons that zinc (100–300 μM) enhances non-N-methyl-d-aspartate-receptor-mediated responses whilst reducing excitatory synaptic transmission and inhibiting long-term potentiation. However, by using zinc-chelating agents, endogenously released zinc following high-frequency stimulation in the stratum lucidum does not appear to have any modulatory role in excitatory synaptic transmission and long-term potentiation. These results indicate that an increase in the level of extracellular zinc can limit excitatory synaptic transmission in the CA1 or CA3 region and further suggests that pathologies that can be related to excessive levels of endogenous zinc may have implications for synaptic plasticity in CA3 neurons.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...