WILBERT

Wildauer Bücher+E-Medien Recherche-Tool

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Neurochemical research 24 (1999), S. 1067-1074 
    ISSN: 1573-6903
    Keywords: Adenosine A2 receptors ; NECA binding ; guanine nucleotides ; glutamate analog ; cAMP ; chicks
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Binding properties of the subtypes of adenosine A2 receptors in membrane preparations and the effects of adenosine receptor ligands on cAMP accumulation in slices from the optic tectum of neonatal chicks have been investigated. [3H]2-[4-(2-p-carboxyethyl)phenylamino]-5'-N-ethylcarboxaminoadenosine (CGS 21680), a selective ligand for adenosine A2a receptors, did not bind to optic tectal membranes, as observed with rat striatal membranes. CGS 21680 also did not induce cyclic AMP accumulation in optic tectum slices. However, 5'-N-ethylcarboxamidoadenosine (NECA), 2-chloro-adenosine or adenosine induced a 2.5- to 3-fold increase on cyclic AMP accumulation in this preparation. [3H]NECA binds to fresh non-washed-membranes obtained from optic tectum of chicks, displaying one population of binding sites, which can be displaced by NECA, 8-phenyltheophylline, 2-chloro-adenosine, but is not affected by CGS 21680. The estimated KD value was 400.90 ± 80.50 nM and the Bmax was estimated to be 2.51 ± 0.54 pmol/mg protein. Guanine nucleotides, which modulate G-proteins activity intracellularly, are also involved in the inhibition of glutamate responses by acting extracellularly. Moreover, we have previously reported that guanine nucleotides potentiate, while glutamate inhibits, adenosine-induced cyclic AMP accumulation in slices from optic tectum of chicks. However, the guanine nucleotides, GMP or GppNHp and the metabotropic glutamate receptors agonist, 1S,3R-ACPD did not alter the [3H]NECA binding observed in fresh non-washed-membranes. Therefore, the adenosine A2 receptor found in the optic tectum must be the adenosine A2b receptor which is available only in fresh membrane preparations, and its not modulated by guanine nucleotides or glutamate analogs.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 66 (1996), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Rat brain microsomes accumulate Ca2+ at the expense of ATP hydrolysis. The rate of transport is not modulated by the monovalent cations K+, Na+, or Li+. Both the Ca2+ uptake and the Ca2+-dependent ATPase activity of microsomes are inhibited by the sulfated polysaccharides heparin, fucosylated chondroitin sulfate, and dextran sulfate. Half-maximal inhibition is observed with sulfated polysaccharide concentrations ranging from 0.5 to 8.0 µg/ml. The inhibition is antagonized by KCl and NaCl but not by LiCl. As a result, Ca2+ transport by the native vesicles, which in the absence of polysaccharides is not modulated by monovalent cations, becomes highly sensitive to these ions. Trifluoperazine has a dual effect on the Ca2+ pump of brain microsomes. At low concentrations (20–80 µM) it stimulates the rate of Ca2+ influx, and at concentrations 〉100 µM it inhibits both the Ca2+ uptake and the ATPase activity. The activation observed at low trifluoperazine concentrations is specific for the brain Ca2+-ATPase; for the Ca2+-ATPases found in blood platelets and in the sarcoplasmic reticulum of skeletal muscle, trifluoperazine causes only a concentration-dependent inhibition of Ca2+ uptake. Passive Ca2+ efflux from brain microsomes preloaded with Ca2+ is increased by trifluoperazine (50–150 µM), and this effect is potentiated by heparin (10 µg/ml), even in the presence of KCl. It is proposed that the Ca2+-ATPase isoform from brain microsomes is modulated differently by polysaccharides and trifluoperazine when compared with skeletal muscle and platelet isoforms.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 90 (2004), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Changes in mitochondrial integrity, reactive oxygen species release and Ca2+ handling are proposed to be involved in the pathogenesis of many neurological disorders including methylmalonic acidaemia and Huntington's disease, which exhibit partial mitochondrial respiratory inhibition. In this report, we studied the mechanisms by which the respiratory chain complex II inhibitors malonate, methylmalonate and 3-nitropropionate affect rat brain mitochondrial function and neuronal survival. All three compounds, at concentrations which inhibit respiration by 50%, induced mitochondrial inner membrane permeabilization when in the presence of micromolar Ca2+ concentrations. ADP, cyclosporin A and catalase prevented or delayed this effect, indicating it is mediated by reactive oxygen species and mitochondrial permeability transition (PT). PT induced by malonate was also present in mitochondria isolated from liver and kidney, but required more significant respiratory inhibition. In brain, PT promoted by complex II inhibition was stimulated by increasing Ca2+ cycling and absent when mitochondria were pre-loaded with Ca2+ or when Ca2+ uptake was prevented. In addition to isolated mitochondria, we determined the effect of methylmalonate on cultured PC12 cells and freshly prepared rat brain slices. Methylmalonate promoted cell death in striatal slices and PC12 cells, in a manner attenuated by cyclosporin A and bongkrekate, and unrelated to impairment of energy metabolism. We propose that under conditions in which mitochondrial complex II is partially inhibited in the CNS, neuronal cell death involves the induction of PT.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Psychopharmacology 70 (1980), S. 173-177 
    ISSN: 1432-2072
    Keywords: Endogenous opiates ; Beta-endorphin ; Amnesic effects ; Amnesic mechanisms ; Memory consolidation ; Non-associative factors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The endogenous opiate peptide, beta-endorphin (0.4, 1.0, 2.0, and 10.0 μg/kg) was injected IP into rats immediately after training in a shuttle avoidance task, and its effect on memory retention was evaluated in test sessions carried out 24 h later. The drug was found to cause retrograde amnesia, the ED50 being 1.0 μg/kg. Beta-endorphin immunoreactivity was measured in the hypothalamus and rest of the brain of rats submitted to training, or test sessions of shuttle avoidance learning, pseudoconditioning in the shuttle-box, tones alone, or foot-shocks alone. After training in any of the four paradigms, there was a marked (46–60%) depletion of beta-endorphin immunoreactivity in the rest of the brain. No changes were detected in the hypothalamus or after test sessions. The loss of beta-endorphin immunoreactivity may be attributed to release of this substance caused by the stimuli used for training. From the present findings, as well as previous observations on the memory-facilitating influence of the opiate receptor antagonist, naloxone, it is concluded that there is a physiological amnesic mechanism mediated by beta-endorphin (and perhaps other opoid peptides as well), which is triggered by the non-associative factors present in the various forms of learning.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Neurochemical research 25 (2000), S. 181-188 
    ISSN: 1573-6903
    Keywords: Adenosine ; guanine nucleotides ; GMP ; adenosine A2 receptors ; glutamate ; hippocampus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Guanine nucleotides (GN) have been implicated in many intracellular mechanisms. Extracellular actions, probably as glutamate receptor antagonists, have also been recently attributed to these compounds. GN may have a neuroprotective role by inhibiting excitotoxic events evoked by glutamate. Effects of extracellular GN on adenosine-evoked cellular responses have also been reported. However, the exact mechanism of such interaction is not known. In the present study, we showed that GN potentiated adenosine-induced cAMP accumulation in slices of hippocampus from young rats. However, neither GMP nor the metabotropic glutamate receptor agonist, 1S,3R-ACPD, inhibited the binding of the adenosine receptor agonist [3H]NECA (when binding to adenosine A2 receptors), or the binding of the adenosine A2a receptor agonist [3H]CGS 21680 in hippocampal membrane preparations. GppNHp, probably by interacting with G-proteins, decreased [3H]CGS 21680 binding. [3H]GMP binding was assayed in order to evaluate the GN sites which are not G-proteins. [3H]GMP binding was inhibited by GMP and GppNHp, but not by 1S,3R-ACPD. The interaction of endogenous adenosine with the GMP-binding sites was determined by incubating membranes in the presence or absence of adenosine deaminase (ADA). NECA, CADO, CGS 21680 and CPA (only at the highest concentration used) increased GMP binding in the presence of ADA. However, in the absence of ADA, the control levels of GMP binding were as high as in the presence of added ADA plus adenosine agonists, indicating that endogenous adenosine modulates the binding of GMP. If this site has a neuroprotective role, adenosine may be increasing its neuromodulator and proposed protective action.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Neurochemical research 25 (2000), S. 211-215 
    ISSN: 1573-6903
    Keywords: Glutamate ; guanine nucleotides ; antinoception ; naturally-occurring compounds
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Glutamate is to be considered a nociceptive neurotransmitter and glutamatergic antagonists present antinoceptive activity. In this study we investigated the effects of the naturally occurring antinociceptive compounds rutin, geraniin and quercetine extracted from Phyllanthus, as well as the diterpene jatrophone, extracted from Jatropha elliptica on the binding of [3H]glutamate and [3H]GMP-PNP [a GTP analogue which binds to extracellular site(s), modulating the glutamatergic transmission] in rat brain membrane. Jatrophone inhibited [3H]glutamate binding and geraniin inhibited [3H]GMP-PNP binding. Quercetine inhibited the binding of both ligands. These results may indicate a neurochemical parameter possibly related to the antinoceptive activity of these natural compounds.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Neurochemical research 22 (1997), S. 181-187 
    ISSN: 1573-6903
    Keywords: Glutamate ; [3H]glutamate-binding ; guanine nucleotides ; adenylate cyclase ; G-proteins
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract GMP-PNP, a non-hydrolyzable analog of GTP binds tightly to G-protein in the presence of Mg2+, so that the binding is stable even after exhaustive washings. This property was exploited to prepare membrane samples of rat brain where G-protein GTP-binding sites were saturated with GMP-PNP. Experiments carried out with these membranes showed that GTP, GMP-PNP, GDP-S and GMP (1 mM) inhibit the sodium-independent [3H]glutamate binding by 30–40% [F(4,40) = 5.9; p 〈 .001], whereas only GMP-PNP activates adenylate cyclase activity [F(6,42) = 3.56; p 〈 .01]. The inhibition of sodium-independent [3H]glutamate binding occurred in the absence of Mg2+. These findings suggest that guanine nucleotides may inhibit glutamate binding and activate adenylate cyclase through distinct mechanisms by acting on different sites.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Neurochemical research 24 (1999), S. 1037-1042 
    ISSN: 1573-6903
    Keywords: Lead acetate ; adenylate cyclase ; 5′-guanylylimidodiphosphate ; forskolin ; cerebral cortex
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Lead decreased in a dose dependent manner the basal AC activity in membranes of rat cerebral cortex (IC50 = 2.5 ± 0.1 μM). In membranes preincubated under basal conditions, AC activity was stimulated by approximately two and fourfold by 10 μM Gpp(NH)p or forskolin, respectively. Under basal conditions, lead (3 μM) inhibited enzyme activity up to 50%, but was not able to inhibit the Gpp(NH)p- or the forskolin-stimulated AC activity. However, in membranes preincubated with Gpp(NH)p (10 μM), lead (3 μM) had no significant effect on enzyme activity, but it partly blocked the stimulation of AC activity elicited by forskolin (10 μM). In membranes preincubated with 10 μM lead, the addition of 10 μM Gpp(NH)p or forskolin in the incubation medium did not stimulate AC activity. However, when added together in the incubation medium Gpp(NH)p + forskolin produced an increase in enzyme activity. In membranes preincubated with 10 μM lead + 10 μM Gpp(NH)p, Gpp(NH)p (10 μM) or forskolin (10 μM) added alone or in combination to the incubation medium did not stimulate AC activity. Moreover, under these latter conditions lead had no further effect on enzyme activity. These results indicate that lead may interact with G-proteins and with the catalytic subunit of cerebral cortical AC to produce inhibition of the enzyme activity.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Neurochemical research 25 (2000), S. 1083-1087 
    ISSN: 1573-6903
    Keywords: Ibogaine ; [3H] MK-801 binding ; NMDA ; NMDA-induced convulsions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Ibogaine, a putative antiaddictive drug, is remarkable in its apparent ability to downgrade withdrawal symptoms and drug craving for extended periods of time after a single dose. Ibogaine acts as a non-competitive NMDA receptor antagonist, while NMDA has been implicated in long lasting changes in neuronal function and in the physiological basis of drug addiction. The purpose of this study was to verify if persistent changes in NMDA receptors could be shown in vivo and in vitro after a single administration of ibogaine. The time course of ibogaine effects were examined on NMDA-induced seizures and [3H] MK-801 binding to cortical membranes in mice 30min, 24, 48, and 72h post treatment. Ibogaine (80 mg/kg, ip) was effective in inhibiting convulsions induced by NMDA at 24 and 72 hours post administration. Likewise, [3H] MK-801 binding was significantly decreased at 24 and 72 h post ibogaine. No significant differences from controls were found at 30min or 48h post ibogaine. This long lasting and complex pattern of modulation of NMDA receptors prompted by a single dose of ibogaine may be associated to its antiaddictive properties.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Neurochemical research 20 (1995), S. 1437-1441 
    ISSN: 1573-6903
    Keywords: Pyroglutamic acid ; organic acidemias ; neurotoxicity ; adenylate cyclase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effect ofl-pyroglutamic acid, a metabolite that accumulates in pyroglutamic aciduria, on different neurochemical parameters was investigated in adult male Wistar rats. Glutamate binding, adenylate cyclase activity and G protein coupling to adenylate cyclase were assayed in the presence of the acid.l-pyroglutamic acid decreased Na+-dependent and Na+-independent glutamate binding Basal and GMP-PNP stimulated adenylate cyclase activity were not affected by the acid. Furthermore, rats received unilateral intrastriatal injections of 10–300 nmol of bufferedl-pyroglutamic acid. Vehicle (0.25 M Tris-Cl, pH 7.35–7.4) was injected into the contralateral striatum. Neurotoxic damage was assessed seven days after the injection by histological examination and by weighing both cerebral hemispheres. No difference in histology or weight could be identified between hemispheres. These results suggest that, although capable of interfering with glutamate binding, pyroglutamate did not cause a major lesion in the present model of neurotoxicity.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...