WILBERT

Wildauer Bücher+E-Medien Recherche-Tool

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Amsterdam: Elsevier
    Publication Date: 2018-12-05
    Description: Three billion people cook their food on biomass-fueled fires. This practice contributes to the anthropogenic radiative forcing. Fuel-efficient biomass cookstoves have the potential to reduce CO2-equivalent emissions from cooking, however, cookstoves made from modern materials and distributed through energy-intensive supply chains have higher embodied CO2-equivalent than traditional cookstoves. No studies exist examining whether lifetime emissions savings from fuel-efficient biomass cookstoves offset embodied emissions, and if so, by what margin. This paper is a complete life cycle inventory of 'The Berkeley-Darfur Stove,' disseminated in Sudan by the non-profit Potential Energy. We estimate the embodied CO2-equivalent in the cookstove associated with materials, manufacturing, transportation, and end-of-life is 17kg of CO2-equivalent. Assuming a mix of 55% non-renewable biomass and 45% renewable biomass, five years of service, and a conservative 35% reduction in fuel use relative to a three-stone fire, the cookstove will offset 7.5 tonnes of CO2-equivalent. A one-to-one replacement of a three-stone fire with the cookstove will save roughly 440 times more CO2-equivalent than it 'costs' to create and distribute. Over its five-year life, we estimate the total use-phase emissions of the cookstove to be 13.5 tonnes CO2-equivalent, and the use-phase accounts for 99.9% of cookstove life cycle emissions. The dominance of use-phase emissions illuminate two important insights: (1) without a rigorous program to monitor use-phase emissions, an accurate estimate of life cycle emissions from biomass cookstoves is not possible, and (2) improving a cookstove's avoided emissions relies almost exclusively on reducing use-phase emissions even if use-phase reductions come at the cost of substantially increased non-use-phase emissions.
    Keywords: ddc:330
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...